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APPENDIX 

The purpose of this Appendix is to give a few mathe- ^ r . ^ . 1/2 

matical properties of the matrix elements Jn>n(q)- This 
quantity is denned by (2.13) and can be put in the form 

/ n ! \ 1 / 2 / hq2 \ 

Wl/ \2maJ 

are able to derive the relations 

= ( J L(n+l)ll2Jn',n+l-nVVn>,n-l~], (A3) 

\2mo)J 

( H1 \ 
f n'—n )Jn>n(q) 

dq 

hq2 / hq2 

Xexp Ln
n'~n[ 

4mo)c \2mo)t • ) • 

(Al) 
\2mo) 

2mo)c 

2 v 1/2 

) 
l(n+iy'2Jn,,n+1+nU2Jn>,n-i~], (A4) 

by using the properties of the harmonic oscillator func- w n i c h w e n a v e u s e ( i t o simplify the matrix elements 
tions 4>{x). The formula (Al) is only valid for nf>n. (2.12). We can also obtain the useful sum rules 
Ln

a(x) is an associated Laguerre polynomial. An expres
sion similar to (Al) can be found when n'<n by using °° 
the relations 2Z /n'n2(g) = l , (A5) 

n'=0 

Jn>n(-q) = Jnn>(q)=(-l)n'~nJn>n(q). (A2) «o ^ 2 

22(n'—n)Jn>n2(q) = . (A6) 
Using the properties of the Laguerre polynomials, we »'-o 2wcoc 
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The influence of an electric field on the second moment A(/) of an exciton wave packet is calculated. The 
following formula is derived: A(/)= (2|(3/^2)[|S4-2Xi(5i+Ci)]/2, where Xi is the (uniform) strength of the 
field along the linear chain molecule and the term Bi-\-Ci depends on the parameters of the system. The 
gradient of the electric field does not contribute to A(/). It is also shown that both the exciton electric dipole 
moment and .Bi+G vanish unless either some states of the units making up the chain (monomers) are parity 
mixtures (as in molecules), or the coupling potential between monomers is not symmetric with respect to 
the parity operators of pairs of adjacent monomers. It must also be required that the monomers have zero 
static dipole moment for the state corresponding to the exciton. 

INTRODUCTION 

IN a previous paper, herein referred to as (A), the 
author1 has derived an expression for the acceleration 

of an exciton wave packet due to an external electric 
field. The acceleration was shown to be proportional to 
the gradient of the electric field, the proportionality con
stant being, therefore, interpretable as the exciton 
electric dipole moment. In the present paper, we extend 
the analysis by (a) investigating the effect of the electric 
field on the rate of spreading of the wave packet, i.e., on 
the second moment of the exciton distribution function, 
and (b) carrying out a brief evaluation of some of the 
derived physical constants of the theory, including the 
exciton dipole moment. All assumptions of the first 
paper are preserved. 

THE SECOND MOMENT OF THE EXCITON 
WAVE PACKET 

We define the second moment by 

A ( 0 = E * ^ / p - W ] 2 = Z a ^ 1 / - W 2 . (i) 

The average position (x) can be trivially calculated from 
Eqs. (17) and (71) of (A). Since the wave packet moves 
with constant acceleration a, and the initial velocity v0 is 
given by 

t>o=-£tfH(*-0&b*(o)MO) 
fii k,i 

1 
= -E( * -Of f *AbAo=0, (2) 

M k,l 
we find 

1 A. Bierman, Phys. Rev. 130, 2266 (1963). (x)^af. 
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But a is proportional to X2, the electric field gradient. To for all r, with 7?r(0) = 0. I t is easy to show that £ / is 
first order in X, then, properly normalized, since Re G£ r Zr*yr) = 0. The solu-

AW = ( * 2 H L ^ V * ^ . (3) 
But 

tion of (13) is given by the following: 
Theorem: 

1 Q oo n 1 /—i(3\n/n\ 

vr(t)=- £ E E - H 
^ m=-Q n=0 p=0 flW 71 J \fi/ 

where £& (/) is the zero-field exciton amplitude; hence, fa 

A(0 = < * o 2 > + 2 X R e Z a V £ / , (4) rt 
where Xhr+n-2P,m / Zm(r) {t—r)ndr. (14) 

<*o 2 HE*£ 2 ^*. (5) Jo 
Proof: Define two operators Er, FT such that, for any 

(i) Calculation of (x0
2) function <£r, 

• i • i i Erd>r
:=(prA.i, 

We now use an identity given by Magee and (15) 
Funabashi,2 F^^^r-i. 

Zk(t) = e-i0it!h(-iyklJ\k{(2l3t/ti), (6) Obviously E r and F r commute. Using Eq. (12) of (A) 
in (13) results in 

for a very long chain where J\k\ is a Bessel function of 
order \k\ ; Eq. (6) can also be proved from Eqs. (11) J ! !__ / ' z7 _ L P ^ v h t (\&\ 
and (13) of (A) by using the relation, ^ fa fa 

<» This first-order, nonhomogeneous differential equation 
exp ( - fy COS^) = / 0 ( T ) + 2 £ / » W c o s w ^ ( - i ) ^ . (7) c a n b e s o l v e d b y t n e u s u a l m e thods , treating Er+Fr as 

m~ a constant coefficient in (16). The formal solution is 
We shall use (6) from here on, with a set equal to zero, i rt 
without loss of generality. Vr(t) = — / dr X)OT %m(t) 

Hence, from (5) and (6), **•/<> 

W)= Z W|*i(7) = 2 I W f c ( 7 ) , (8) 

XexpZ(-i/h)p(Er+Fr)(t-T)2hrm. (17) 
Now 

expt-(i/h)P(Er+Fr)(t-T)l 

-i/3\n (t-r)n 

where y = 2(3t/fi. Repeated application of __y* ( ^_\ ____(•& \p \n 

(a) kJk(y) = iy[Jh-i+Jk+1'], where 
(9) » fn\ 

(b) i 7 2 ^ - i / y f c + i = l 7 2 ^ 2 - / xJk
2(x)dx, p^o\pJ 

Jo 
leads finally to Since E^^F^hrm^hr-^p+n^ Eq. (14) results im-

<*o2> = §72. (10) mediately. 

Equation (10) follows from the assumption that the ( i i i ) Evaluation of the ^ part of rjk 
chain is essentially infinite, i.e., / Q ( Y ) ~ 0 for all finite 
y (or 0 , where 0 is the index of the chain ends. This T o evaluate (14), we turn to Eq. (58) of (A) which 
result was also given in Magee and Funabashi. Hence, £ l v e s t h e *•« m t e r m s o f c e r t a m coefficients A, B, and 

C. In particular, the dependence on the Xi part of the 
A(t)= ( 2 / W ) + 2 X Re £ f c # ^ * * . (H) electric field is given by 

(ii) Formula for rjk 
Xi/zsm=Xi{£smJ4i+Ci+ (5 s m + i+5 s m _i)^ i} . (19) 

rr. r i i i-rr • T • ^ Consider now first the contribution of Ai. 
<Z° f ^ d l 5 e r e n t i a l e < 3 u a t l o n f o r *» w e u s e E q s - r*e*r«»: The contribution of A x to A (*) is zero. 
(J6) and (41) ot (A) : p f ^ ; T h e ̂  t t e r m o f ^ w h e n p l a c e d j n t o E q ( M ) 

Lmfl'rm'(^+xi7ro)=^(a/ao(?r+xi7r), , , y i e l d s 

• " rm • " rm I A firm , 
(12) Xi^i » » 1 

I) with the conclusion that ** «-op~ow! \hJ\pJ 

Y.mHrm71m+Ylmhrmim=hi(dr]r/dt) (13) / , x ^ ^Q) 

2 T.L. Magee and K. Funabashi, T. Chem. Phys. 34,1715 (1961). Jo 
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Now examine only the dependence of ??r
(1) on coefficient? To determine this, we realize that for any n 

i= (—1)1/2. From Eq. (6), £r+n-2P goes as (—i)\r+n~2*>l, there must exist ap such that p=i(n—s), but p is a non-
so that 7?r

(1)(0 is proportional to (—f)n+1(—i)\r+n-2P\ negative integer less than n; hence n> \s\, and fur ther-
which means (—i)(—-i)±r. Since £r* goes as ( + i ) | r | , the more must be summed in steps of two: i.e., n= \s\, 
product £r*?7r(1) is pure imaginary thus yielding no con- | s | + 2 , • • •. This enables us now to rewrite (26) as 
tribution to A(/), as defined by Eq. (11). follows: 

Now consider the XiCi term. I ts contribution to rjr(t), 
defined here as r?/2)(/) is obviously ta^i £ ^ „ * / ^ \ Y n 

f\r \t) ~ > = — E E " - ( - ) ) 
8 «—» n-i»i n\\h/ \hn—hs/ 

*w(0=—- E E £ (—) - ( ,< 
ht — e - o ^ - o V ft / « ! V x / £ r + s ( T ) ( T _ ^ T ) (27) 

/.« ./ 0 

X rfr(/-r)»fw(r). (21) , . 
yo where 2 / means sum in steps of two only. If we write 

n /n\ / n \ 
Now use the relation that E ( ) = ^n\ Eq. (21) be- out f ) , one gets now 

comes then 
XIJBI oo r* 

XiCi' i?rC8)(0 = E / &+.(*) 

M 

1 r # T 
X / e x p [ - ( 2 # / f t ) ( * - r ) ] E {*(r)dr. (22) »H.| Qn~is) IQn+is) L * J 

»/ o m = - Q 

(28) 

_ Now consider s > 0 , and set Q=\n—\s\ hence, 

The sum lim E im{r) can be easily evaluated from 
Q-oo m = - Q <» 1 r 1$ ~ln 

E " (t-r) 
Eq. (7). Setting <p=0 and remembering Eq. (6), leads to »=• (in—^s)\(^n+^s) L ft J 

Q °° ( - 1 ) * r 0 T a + S 

lim L fm(r) = e x p ( - 2 ^ r / f t ) . (23) = ( - * ) ' £ - ( ' ~ T ) ' ^ 
Q->oo m=^Q 2=0 g ! ( g + ^ ) ! L ^ J 

Hence, m (22), j n ^ jg form j ^ (29) can now be recognized to be just 

^ 0 ) = ( X 1 C 1 / « ) / e x p [ - ( 2 W ^ ] . (24) e ^ a U ° ( - * ) V . W / * ) ( / - r ) ] , , x „ . 
Similarly consider ^ < 0 , and let g = f n + f s . Hence, 

Now consider the contribution of \iBi(3srrH.i+8sm-i) to 
rjr, here called ??r

(3) (t). From (14), 
E' 

n - . dn-is)l(in+hs)i 
XiBi oo n 1 /i$\nfrv 

i(3 ~\n 

(t-r) 
h J Xji5i oo n 1 /tf3\n/n\ 

H r ( 8 ) ( 0 — j - - l E - h oo ( - 1 ) . r/3 n»<ri-|.| 

«-og!(g+M)lU J 
X / ( r - / ) l ^ + « - 2 p - i ( / ) + ^+n-2p-fi] <M . (25) = ( - i ) l 8 ' / | , | [ 0 3 / * ) ( / - r ) ] . (30) 

_> . . ^ /oN i /^N r /*\ i - i Inspection shows that for ^ = 0, the series is just 
By virtue of Eqs. (8) and (12) of (A), this becomes 7 0 [ ( / 3 A ) ( / - r ) ] . Hence, 

XiBi «> n 1 /i(3\n/n\ t 

i7rw(0=— E E - ^ - j y ur«(0=(Mi/flE f (-OIH-,+",/i.i 
s=-oo J o 

X {r-ty d r . (26) X [ K ^ r ) H k + s , ( M ^ , (31) 
./o dr dr 

Now set s=n—2p; from the limits of p and w, where b=fi/h, and we have used Eq. (6). 
— <n<s<-\- oo. Consider a given £>+s* What is its To simplify further discussion, let £=bt, and Z=br; 
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using the well-known relations for JV (2), (31) becomes 

1?r(8)(0=(Xl3l/2/3)E / (-i)lr+s^slj rUI 

X ( f - z ) [ / | r + , | _ i - / | r + a | + i ] r f z . (32) 

To evaluate (32), consider separately the terms for 
which s is less than or equal to — r, the terms for which 
s is between — r and 0, and the terms with O O . I t 
follows immediately that 

* r ( 8 ) ( o = — ( - < ) ' / " { £ [/.a-*)JVH-i(*) 
2/3 7 0 *—« 

- J s ( f - s ) / r + < s + 1 ( 2 ) ] } . (33) 

Now use the Schlani formula, 

/-,(*+*)= E (- l )m /^(0/«W, (34) 
m=—oo 

which results finally in 

Vr^0) = —i—. (35) 
13 dt 

(iv) Evaluation of the ^2 part of r]k 

The X2 part of the electric field contributes to hsm the 
terms 

\<2hsm=\2\iSmA 25sm+ mC2+sCz* 

+ (dsm+i+dsm-i) (tnBt+sBi*)!. (36) 

We can neglect the A 2 contribution because it yields 
only an imaginary ??r(4)00£r*(O by the same argument 
as before. 

Now consider the contribution of the term ?nC2+sC2*. 
Its evaluation is greatly simplified by going back to 
Eq. (18) and noting that one could have written 

The C2 term vanishes because E w£m—0 by sym-

metry. The contribution of C2* vanishes in A(/), because, 
from (39), 

Vr^(t) = rD(t) (40) 

and therefore, 

E fV5)(0fr*(0=o, 
r=—Q 

(41) 

again by symmetry. 
We will now prove that the contribution of the B2 

terms to A(t) is also zero. We start with an rjr^(t) by 
introducing the B2 and B2* terms of (36) into (14), with 
the result, 

„r<«(0 
X2 / - » ( 3 \ " l / f 

= - £ £ ( — ) - ( 
<—i(3\nl fn\ 

\pj 

X [_5r_2p-f n, m-fl I 0r~ 2p+n, m— 1J 

X[mB2+(r-2p+n)B2*-]\ dr(t-r)^m. (42) 
./o 

This leads immediately to 

X2 /-iB\nl/n\ 
1?r<6)(0 

A2 (-tp\nl/n\ 

hi n,p\ h J nl\p/ 

x\(r-2p+n)(B2+B2*) dr 

(E 
n /fl\ 

r+F r)"=£( 

X (t— r)n (£r-2p+n-l-{- %r-2p+n+l) 

+ B2 dr(t-T)n(^-2p+n+l-^r-2p+n-l)\ (43) 

(44) = \2(B2+B2*)I(t)+\2B2II(t). 

Er
pFr

n~P • (37) 

This enables us now to rewrite (14) 

Q oo n 1 /n\ 

n,(0= (1/2*0 E Z L ( - W -
m=—Q n=0 p=0 flWpJ 

2p+n, m\rlr+2p—n, m_\ 

X (t-r)^m(r)dr, (38) 
./o 

1 <? oo n 1 ffl\ 

nr(6)(0— E E E ( - W * H (^2+rC2*) 
^ ' ra=— Q n=0 p=0 

X f (t-r)^m(r)dr. (39) 
./o 

Consider l(t). We again replace £r-2p+n-i+£r-2p+n+i t y 
(M/fi)%r-2p+n and then change variables from (n,p) to 
(w,s) where s=n—2p. The argument is here identical to 
that in Eqs. (26) to (31). We therefore find 

1 00 / •« 

I (0 = - E (r+s) Zr+sHsdr. (45) 
13 «—<» 7 0 

I ts contribution to A(j) will, therefore, have the form 

A i ~ E ' E r*(s+r)S*[ tr+stsdr. (46) 
r=—Q s=-oo J 0 

I t is clear from inspection that Ai is of the form Er,« Fr8 

where F_ r_ s= — Frs; (46) is, therefore, zero. 
Now consider II(t). We rewrite it by using part (a) of 
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Eq. (9), with 7 = 2^/fi. One can then easily show that hence, 

£ r-2p+n+l ( r ) — %r-~2p+n-l ( T ) 

1 d/2pH2\ 2/32 

2 <fc\ &2 / h2 
(55) 

* 

Hence, 

= —(—i)(r+n-2p)%r+n-2p(T). (47) from (10). Combining now (51) and (55) with (50) 
fiT leads to 

/—tfi\nl /n\ 
n(0-E( ) - )(r+n-2p) 

X / —(t-T)*Sr+»-tp. (48) 
'0 r 

2/3H2 

A ( 0 = K2X 
&2 

2*20 

/Ci 2/3* 
1 Re( —* e x p - (2i$t/h)i— exp(2ifit/h) 

\hi h 

B^2 

+ 2—t—t 

Again change from (n,p) to (w,s), with the result that A(0 — [ / 3 + A I 2 ( J 3 I + C I ) ] . 
(48) becomes ^ 

) , (56) 

(57) 

n ( 0 - E (r+s) 
Cl dr 

JO T 

(AQ) We can then conclude that the Xi part of the electric 
field does modify the second moment of the exciton 
wave packet. The specific manner in which it does so, 

But, by the same argument as in (46), its contribution depends on the value of B1+C1. 
to A(t) vanishes. We now turn to a partial evaluation of the coefficients, 

We, therefore, conclude that the X2 part of the electric so far derived in the theory. 
field does not contribute to A(t). 

THE PHYSICAL CONSTANTS OF THE THEORY 
(v) Calculation of A(t) In (A) it was shown that the exciton dipole moment is 

, . ., , /f%A. , „ ^ proportional to J B 2 + C 2 ; here we have shown that the 
We now calculate the contributions of (24) and (35) e f f ^ o f ^ d e c t r i c fidd o n ^ s p r e a d i n g r a t e d e p e n d s 

to A(t). We have 

2pH2 

A(0 = +2Xi Re £*«{** 
h2 k 

on B1+C1. These coefficients are defined through Eqs. 
(47), (49), (55), and (57) of (A). Inspection of these 
reveals some information about these constants. 

From the defining relations, we have 

X —texp-(2ifit/h)-\ 1— 
Lhi 0 dt-1 

(50) 
X i ( 5 1 + C i ) = - g \ i 2 R e { E ZrMei-e*)-1 

<r^0,l 

The following theorem is helpful: 
Theorem: 

where 

S W ^ E * k2£k* = i(2l3t/ti) exp(2#*/ft). (51) 

Proof: Consider Eq. (7) and differentiate twice with 
respect to <p. The result is 

iy exp(—iy cos <p) (cos <p-\- iy sinV) 

= - 2 E (-i)mJm{y)m* cosm<p. (52) 

+ ZoiFo(61-60)-1} : 

P,= (<Pl(s)\V\X.(s+l)W X0(j))> 
39*8+1 

VQ=(<pi(s)\V\X,(s+\)Il' X0(j)). 
39*8+1 

(58) 

(59) 

Hence, Fo=jfto, and (58) can be simplified to read 

Xi(Bi+Ci)= -2eXi Re E ZaA(ei-eff)-K (60) 
09*1 

Similarly, 

Now set <p=0 and take the complex conjugate of the X2CB2+C2) —X2 E u<nP<r 
resulting equation. We find 

iye*y=2 Y,m(-i)mmUm(y). (53) = -2eX2 Re E Zr&fa-eJ-iR, (61) 

This proves the theorem. 
Further consider 

Re E &b*fc*2=i E *2(&*&+«*&*) 
k k 

so that £>2+C2 and B1+C1 are proportional to each 
other by the factor (X2/Xi)i£, where R is the distance 
between successive unit centers. 

Now, from Eq. (54), 

2dt h 
(54) (62) 
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where m is the index labeling the r electrons of the 
atomic or molecular units making up the chain, a(s) 
refers to the state a of the sth unit and Zm

r is the Z 
coordinate of the rath electron relative to its nucleus. 
Furthermore, from (59) and from Eqs. (3) and (4) of (A) 

k=<*iMII*o(Oinx,(H-i) IT x0(j)) 

= (X1(s)X0(s+l)\ V(s, s+l)\X0(s+l)Xo(s)) (63) 

if a is not zero, and, for <r = 0, 

j 8o=2<X 1 WZo(5+ l ) |F (5 ,5+ l ) |X 0 (5+ l )ZoW>. (64) 

The factor 2 in (64) arises because both V(s, s+1) and 
V(s,s—l) yield a nonzero matrix element. I t follows 
then from (61), (62), and (63) that Bt+Ci and B2+C2 

consist of sums of products of the form 

G.= J:(<r(s)\Zm'\l(s)) 
m—l 

X(X1(s)X0(s+l)\V(s,s+l)\Xff(s+l)Xo(s)) 

X ( 6 i - 6 , ) - 1 . (65) 

The following theorem can now be easily proved: 
Theorem: If (a) all states of a given monomer (atom 

or molecule making up the chain) are eigenstates of 
parity about the x, y plane passing through the monomer 
origin, i.e., (?(8)\<r(s)) = ( ± 1 ) k W ) , and if (b) the 
coupling potential V(s,s+1) is a symmetric operator 
with respect to (P(S)(Ps+i [where (P(s) is the parity 
operator with respect to the origin of the sth monomer 
and <P8+i with respect to the origin of the ( s + l ) t h 
monomer], i.e., (?s-

1(?s+r1V(?$6
>

s+1 = V, then (?,=(). 
Proof: From the assumptions of the theorem, we have 

(<r(s)\Zm'\ 1 (*)>= -(a(s) | (9s-
lZm

f(98\ l{s)) 

= -((Psa(s)\Zm
/\(Psl(s)). (66) 

To be nonzero, \cr(s)) and 11 (s)) have opposite parity. 

Now: 

(XxWXQis+VlV&s+iilX.is+VXois)) 

= (X1(s)X0(s+l) | (P.-kP.+rWsOVil Xv(s+l)X0(s)) 

= ((P.XxWCP.+xXo^+l) | V\ (?s+1Xa(s+l)(PsXo(s)) 

= ((?sX1(s)X0(s+l)\V\(S>s+1X(r(s+l)Xo(s)) 

= -(Xi(s)Xo(s+l)\V\X.(s+l)XQ(s)), 

thus proving the theorem. 
Since all isolated atomic states are eigenstates of 

parity, we can conclude for systems of identical atoms 
coupled by a parity-symmetric V, that an electric field 
will not influence exciton wave packets in the manner 
considered. But, if the units or monomers making up 
the crystal or giant molecule are molecules with struc
ture, so that their stationary states are not eigenstates 
of parity, or if V is not the specified symmetry operator, 
then an effect can be anticipated. If the monomer states 
are not eigenstates of parity, the static monomer dipole 
moment may not vanish. On the other hand, as shown 
in Eq. (33) of (A), the particular state for which an 
exciton arises, say the first excited state, must have a 
zero, or vanishingly small static dipole moment. Other
wise the coupling of this moment to the gradient of the 
electric field produces an energy difference between 
different monomers of the chain, thus destroying the 
identity of the units. In view of the previous paragraph, 
the absence of this particular static dipole moment now 
becomes a separate requirement. 

These conclusions follow immediately from the con
sideration that we are looking at an effect which depends 
both on the electric field and the exciton, but is pro
portional to X to the first power only. The exciton 
property therefore, e.g., the dipole moment, if it is to 
have a spatially preferred direction, must derive this 
from an asymmetry inherent in the monomer structure. 
This requires the monomer state to be a parity mixture, 
for otherwise such a preferred direction would not exist. 
More specific information about these coefficients prob
ably depends strongly on the model assumed. 
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